

■スキルアップ編

第1章 ソリッド モデリング(1)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	6
1. パーツモデルの作成(1) ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	7 16
第2章 サーフェス モデリング・・・・・・・・・・・・・・・・・	28
1. PCマウスの作成・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	29 48 56
第3章 ソリッド モデリング(2)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	74
1. マヨネーズ ホルダーの作成・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	75 87
第4章 板金 · · · · · · · · · · · · · · · · · ·	98
1. 板金に変換(1)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	100 102 104
第5章 アセンブリ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	112
1.合致コントローラ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	113 118
第6章 スケッチレイアウト・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	122 123

目次

ここでは、基本的な押し出し、参照平面の使い方、穴ウィザード、ねじ山についてモデリングを通して学習します。

☆作成の流れ

 1. 押し出し、平面を使って、外形を 作成します。

2.穴やねじを作成します。

3.参照平面を作成し、円柱面に穴を 作成して完成です。

【パーツモデル(1)_参考寸法】

1.1

ここでは、回転カット、押し出しカット(反対側をカット)、穴ウィ ザード、円形パターンについてモデリングを通して学習します。

4

サーフェスを組み合わせて外形を作成し、ソリッド化、シェル 化してPCマウスを作成します。

☆作成の流れ

1.サーフェスを組み合わせて、外形 面を作成します。

2.面を編み合わせて、ソリッド化しま す。

3.シェル化します。

ţ

4.PCマウスの完成です。

サーフェスを使ったFANの作成は、ロフトサーフェスとサーフ ェスを組み合わせた面に、厚みをつけて作成します。

☆作成の流れ

1.ロフトサーフェスとサーフェスを組 み合わせて面を作成します。

2.面に厚みとフィレットを追加します。

3.回転パターンを使って羽を3枚にします。

4.中心部を作成して完成です。

香りボトルの作成

香りボトルの作成は、サーフェス ロフトで外形を作成します。 ロフト作成時に注意が必要です。また、ボディの分割による香 り穴の作成時も注意しましょう。

☆作成の流れ

1.サーフェスでボトルの外形を作 成します。

2.開いている部分を閉じてソリッド 化します。

3.シェルで薄肉化し、ソリッドを分割します。

4.香り穴を作成して完成です。

マヨネーズ ホルダーの作成

ロフトとシェルを使って「マヨネーズホルダー」を作成します。 シェルで、エラーが表示された場合のチェック方法も行います。

☆作成の流れ

3.1

10

ー見、難しそうな形状も基本フィーチャーの回転、押し出し、 スイープで作成することができます。

☆作成の流れ

- 1. 回転フィーチャーを使って、基準 となる部分を作成します。
- 2. 押し出しフィーチャー、スイープ フィーチャーで外形を作成します。

3. 穴を作成して完成です。

<u>板金に変換(1)_手順①</u>

	1. 板金に変換(1).sldprtを開きます。
 3) 表示(V) 挿入(D) (P+k(T) Simulation(S) ウク/P(W) (A)/P(H) * (P)/P(H)) (P) (P)/P(H) (P)/P(H) (P) (P)/P(H) (P)/P(H) (P) (P)/P(H) (P) (P)/P(H) (P)/P(H) (P)	2. 「挿入」→「板金」→「板金に変換」を クリックします。
	3. モデルの「裏面」を選択します。
板金バラメータ(P) 面<1> この0mm □厚み反転(R) □ボディ保持 2.00mm 2.00mm	4. 板金パラメータを以下の様に設定し ます。 シート厚み:2mm ベンドのデフォルト半径:2mm
	5. ベンドエッジとして、「エッジ」4か所を 選択します。

13

<u>板金に変換(2)_手順①</u>

4.2

	1. 板金に変換(2).sldprtを開きます。
 3) 表示(V) 挿入(単 V-Ik(T) Simulation(S) ウィンドウ(W) へりマ(H) × 	2. 「挿入」→「板金」→「板金に変換」を クリックします。
	3. モデルの「裏面」を選択します。
板金バラメータ(P) 面<1> この0mm □厚み反転(R) □ボディ保持 2.00mm 2.00mm	4. 板金パラメータを以下の様に設定し ます。 シート厚み:2mm ベンドのデフォルト半径:2mm
	5. ベンドエッジとして、「エッジ」2か所を 選択します。

「角度」合致と「ねじ」合致を追加し、位置を追加・設定してア ニメーションを作成します。

☆作成の流れ

1.「角度」合致を追加します。

2.「ねじ」合致を追加します。

3.「位置」を追加し、設定します。

4.アニメーションを計算します。

合致コントローラより動作範囲を広げたアニメーションを作成 します。キーの配置と値の設定方法を学習します。

☆作成の流れ

5.2

スケッチでレイアウトを作成し、アセンブリと各部品を作成す る方法を学習します。

☆作成の流れ

1.スケッチでテーブルの高さや幅、脚 の位置(角度等)をイメージします。 これを"レイアウト"とします。

2.レイアウトを元に天板、脚を作成します。

3.軸を作成してアセンブリを完成します。

4.レイアウトの高さや幅、脚の角度を 変更することで、アセンブリモデルが 変更できるようになります。

SOLIDWORKS 2022 スキルアップ編

令和4年 1月 発行著 者:田中正史印刷・製作:Mクラフト

ニお問い合わせ=
 神奈川県小田原市本町2-2-16
 陽輪台小田原205
 TEL 0465-43-8482
 FAX 0465-43-8482
 Eメール info@mcraft-net.com
 ホームページ http://www.mcraft-net.com

・本書中の商品名は各社の商標または登録商標です。

・許可なしに本書の一部または全部を転載・複製することを禁止します。

・本書の一部または全部を用いて、教育を行う場合は書面にて上記宛事前にご連絡ください。